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Abstract

In a suburban passenger railway network, a delay of a single train is likely to affect
not only the passengers aboard or waiting for that train, but those on subsequent
trains as well. These knock-on effects are caused by the delayed train blocking
sections of track and lead to congestion and slower boarding rate on overcrowded
trains. When a delay has occurred, the delayed trains and other nearby trains can
be re-scheduled to minimise the detrimental effect of the delay. This paper shows
how to re-schedule to minimize negative impact on passengers.

A simple double track train network with a single delay is considered. The
model takes into account the travel times of passengers, boarding times at stations
which are lengthened when the train is crowded, and the ability of trains to bypass
stations.
Keywords: passenger delay, rail, disruption, recovery.

1 Introduction

Disruption in rail networks can impose a substantial cost to the operator. The
Melbourne passenger rail network is a radial network with morning trains
essentially picking up passengers to deliver them to the hub (Flinders Street
station). In this peak period the trains are running quite frequently and a common
assumption to make in such a situation is that passengers arrive randomly with
uniform distribution.

For trains arriving late to the final destination, one penalty incurred by the
operator is measured by passenger-weighted minutes [1]. This is calculated by
taking a fixed cost (roughly AU$0.31 as at 2012 for the Melbourne network) for
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each passenger for every minute that the train is late arriving at the final destination
and having a fixed expected number of passengers aboard the train. This method is
designed to improve upon the method of measuring pure lateness (which penalizes
a given train by the number of minutes it is late), by weighting trains in terms of the
number of passengers that usually alight that train at the final station. In the case
of a disruption, these penalties encourage the operator to minimize the lateness of
the trains with preference to the heavily weighted trains. In the case of morning
rush hour, each train collecting passengers traveling to the city conceivably has the
same (or close to the same) weighting.

We look at this problem from a different perspective. Rather than just trying to
recover to the original schedule after a disruption has occurred, or to minimize the
arrival times at the final station, we study the rescheduling of trains with passengers
in mind. In particular we consider the average passenger travel time over a time
period with the goal of minimizing the impact of a disruption on the total passenger
travel time whilst ensuring that all passengers arrive at their destination.

To do this, we study a simple setup of a double track line with each track only
operating in one direction and thus trains cannot overtake. In such a scenario, a
delay on one train can result in queuing. We also assume that passengers arrive at
the station platforms at a constant rate (this constant can vary between differing
stations) and that all passengers boarding a train alight at the final destination. We
have in mind a morning peak period where most passengers do board a train to
alight at its final destination.

We demonstrate that objective functions related to passenger travel time, which
in the past may have been considered too complicated to solve, are indeed worth
pursuing.

2 A simple example of train delay and recovery

We first consider a very simple problem consisting of three stations {S1, S2, S3}
and two trains {T1, T2}. We make the following assumptions for this example:

(i) that each train starts at S1, stops at S2 to pick up passengers and finishes its
journey at S3,

(ii) no train can overtake any preceding train,
(iii) there are a constant number ρ2 passengers arriving at S2 per minute,
(iv) each train Ti has unbounded capacity, and
(v) trains have a constant travel time of 17 minutes between stations S1 and S2

and 12 minutes between S2 and S3.
Consider the schedule,

d1,1 = 0 d2,1 = 5

a1,2 = 17 a2,2 = 22

d1,2 = 20 d2,2 = 25

a1,3 = 32 a2,3 = 37

where di,j (respectively ai,j) denotes the departure (respectively arrival) time
of train Ti at station Sj relative to the start of the schedule period in minutes.
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Figure 1: Simple example.

Assume that passengers begin arriving at station S2 at time 10 or equivalently that
passengers arriving before time 10 have boarded a preceding train.

Given this setup, we now introduce a delay. Suppose that T2 is delayed
between S1 and S2 for 20 minutes. Specifically, T2 stops at time 15, and resumes at
time 35 to arrive at S2 at 42. We assume that at time 15, the train T1 has knowledge
that T2 will be stationary between S1 and S2 at time 15 and that it will resume
again at 35 (see Figure 1).
Question. Can we reschedule the departure time of T1 and T2 from S2 to reduce
the average travel time of passengers boarding T1 and T2 at S2?
We will assume that passengers are arriving at S2 at a constant rate for all time
t ≥ 10. We further assume that T2 departs S2 at time 43, so that it must collect
passengers from S2.

The travel time of a passenger boarding Ti, for i ∈ {1, 2}, at S2 is given by
xi,2 + 12 − t, where xi,2 is the rescheduled departure time of Ti from S2 and t
is the time that the passenger arrives at S2 (we already assumed that x2,2 = 43).
Thus, the total travel time of passengers aboard T1 and T2 is given by

ρ2

∫ x1,2

10

x1,2 + 12− t dt+ ρ2

∫ 43

x1,2

43 + 12− t dt (1)

= ρ2
(1
2
(x1,2 − 10)2 +

1

2
(43− x1,2)

2 + 516
) − 120ρ2, (2)

where ρ2 is the constant rate of passenger arrival at S2. Therefore, to minimise
the total travel time, we want to find x̂1,2 for x1,2, that minimise 1

2 (x1,2 − 10)2 +
1
2 (43− x1,2)

2 + 516.
Thus x̂1,2 can be found by solving the equation

d

dx̂1,2

(
(x̂1,2 − 10)2 + (43− x̂1,2)

2) = 0, (3)

which gives x̂1,2 = 26.5.
We have just shown that to minimize the total, or equivalently average, travel

time of the passengers boarding T1 and T2 at S2 we should reschedule the
departure times of T1 and T2 from S2 to 26.5 and 43 respectively. With ρ2 = 1
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this gives the total travel time of 668.25 minutes (an average of 20.25 minutes)
for passengers aboard T1 and T2. Note that this requires T1 to delay itself by 6.5
minutes, even though it is not physically affected by the delay of T2. In contrast,
if T1 continued on “business as usual” and did not delay itself (so x1,2 = 20
and x2,2 = 43) then we obtain a total travel time of 710.5 (an average of 21.53
minutes).

3 Problem formulation

For the general case we assume that we have m stations {S1, S2, . . . , Sm} and n
trains {T1, T2, . . . , Tn} and schedule

{di,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1} ∪ {ai,j | 1 ≤ i ≤ n, 2 ≤ j ≤ m}, (4)

where di,j refers to the scheduled departure time of Ti from Sj and similarly ai,j
refers to the scheduled arrival time of Ti at Sj .

3.1 Assumptions

(i) In the undisrupted schedule, each train starts at S1, stops at each Sj for
j = 2, . . . ,m − 1 to collect passengers, and then arrives at Sm where all
passengers alight.

(ii) No train can overtake any preceding train.
(iii) There is a constant rate of passengers arriving at each station.
(iv) Passengers stop arriving at the scheduled departure time of the final

train dn,j .
(v) A more subtle requirement that we make, in rescheduling, is to forbid the

departure of a given train at a given station to be sooner than its scheduled
departure. This may seem unreasonable since we assume a constant rate
of passenger arrival to the platforms of each station however, this does not
exclude the possibility that a portion of the passengers are arriving according
to the original schedule. For this reason we favor recovering to the original
schedule rather than completely rescheduling.

(vi) We also allow trains to skip stations in rescheduling. This is only a problem
if passengers wish to alight at stations before Sm, which we do not allow. In
reality, even if some passengers do alight at intermediate stations, trains may
be rescheduled to skip stations as long as the driver alerts the passengers at
preceding points that this will occur.

(vii) A train that is stationary at a station cannot depart if it is not filled to capacity
and there are passengers waiting to board (Section 3.4 constraint (k)).

3.2 Sets and parameters

N = {1, 2, . . . , n}, Nn = N \ {n} and N1 = N \ {1}.
M = {1, 2, . . . ,m}, Mm = M \ {m} and M1 = M \ {1}.
Ti represents train i for i ∈ N .
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Sj represents station j for j ∈ M .
ρj constant rate of passengers arriving at station Sj per time unit.
αj minimum time for a train to move from Sj to Sj+1, where we assume that

the original schedule satisfies ai,j+1 − di,j ≥ αj .
c capacity of each train Ti.
pj the time that passengers begin arriving at Sj .
h minimum headway between consecutive trains.
w minimum dwell time at each station (if the train stops).
u speed up and slow down time of the trains departing and entering stations

(or simply time at the station where the train cannot collect passengers).
i′ train Ti′ is the delayed train.
t′ time that Ti′ is delayed.
j′ train Ti′ is at or approaching Sj′ at time t′.
δ duration that Ti′ is delayed.
γ the proportion of capacity which determines a crowded train.
b1 the rate of passengers per time unit that can board a non-crowded train.
b2 the rate of passengers per time unit that can board a crowded train.

3.3 Decision variables

Suppose that a delay has been introduced and we want to produce a new schedule
that minimizes the total travel time of the passengers. For this situation we
introduce the following variables.
xi,j the rescheduled departure time of Ti from Sj for i ∈ N , j ∈ Mm.
yi,j the rescheduled arrival time of Ti from Sj , for i ∈ N , j ∈ M .
For each i ∈ N and j ∈ Mm, there is a continuous interval σi,j of time in which

the people arriving at Sj board Ti.
σl
i,j the greatest lower bound of σi,j , for i ∈ N , j ∈ Mm.

σu
i,j the least upper bound of σi,j , for i ∈ N , j ∈ Mm.
ci,j = (σu

i,j − σl
i,j)ρj the number of passengers that Ti collects at Sj , for i ∈ N

and j ∈ Mm.
li,j =

∑
l≤j ci,l the number of passengers (or load) on train Ti at the time of

departure from Sj , for i ∈ N and j ∈ Mm.
Figure 2 represents a situation where σu

i,j < xi,j . Such events may occur in reality
e.g. Ti fills to capacity at Sj but does not immediately depart because it is traveling
closely behind Ti−1, which is affected by a delay, and so chooses to wait at Sj to
maintain headway with Ti−1.

σu
i−1,j = σl

i,j σu
i,j = σl

i+1,j

yi,j xi,j

Figure 2: σi,j interval related to train arrival and departure.
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3.4 Constraints

Constraints (k)-(m) involve disjunctions of linear constraints which we simply
represent using the disjunction symbol ∨.

(a) Fix the departure times that will not be affected by the delay.
If di,j ≤ t′ then xi,j = di,j i ∈ n, j ∈ M .

(b) Fix the arrival times that will not be affected by the delay.
If ai,j ≤ t′ then yi,j = ai,j i ∈ N , j ∈ M .

(c) Introduce the delay of train Ti′ .

xi′,j′ ≥ t′ + δ and

if t′ < ai′,j′ then yi′,j′ ≥ xi′,j′−1 + δ + αj′−1.

(d) No train can leave a station before it arrives.
xi,j ≥ yi,j i ∈ N, j ∈ M .

(e) No train departs a station before its scheduled departure time.
xi,j ≥ di,j i ∈ N , j ∈ Mm.

(f) Each train must travel at least αj−1 time between station Sj−1 and Sj .
yi,j+1 ≥ xi,j + αj i ∈ N , j ∈ Mm.

(g) Each train departs from S1 before the next train (respecting the headway h).

xi,1 + h ≤ xi+1,1 i ∈ N1.
Each train departs a station before the next train arrives.
xi,j + h ≤ yi+1,j i ∈ Nn, j ∈ M1.

(h) Each passenger at each station boards a train.
σl
i,j ≤ σu

i,j i ∈ N , j ∈ Mm,
σl
1,j = pj j ∈ Mm,

σu
n,j = dn,j j ∈ Mm,

σu
i,j = σl

i+1,j i ∈ Nn, j ∈ Mm.
(i) Capacity constraint.

li,j ≤ c i ∈ N , j ∈ Mm.
(j) Passengers cannot board a train after it leaves.

σu
i,j ≤ xi,j i ∈ N , j ∈ Mm

.(k) Collect all passengers up until departure time subject to capacity.
(σl

i,j = σu
i,j) ∨ (σu

i,j = xi,j) ∨ (σu
i,j = dn,j) ∨ (ci,j = c− li,j−1)

i ∈ N, j ∈ Mm,
(xi,j ≤ yi,j) ∨ (c = li,j−1) ∨ (σl

i,j < σu
i,j)

i ∈ N, j ∈ Mm.

(l) If a train stops, then it has a minimum dwell time.
(xi,j ≤ yi,j) ∨ (xi,j − yi,j ≥ w + u) i ∈ N , j ∈ M .

(m) The number of passengers that board a train is dependent on the current
number of passengers on the train.
ci,j ≤ b1(xi,j − yi,j − u) i ∈ N , j ∈ Mm

(li,j−1 ≤ γc) ∨ (ci,j ≤ b2(xi,j − yi,j − u)) i ∈ N, j ∈ Mm.

548  Computers in Railways XIII

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 127, © 2012 WIT Press



3.5 Round trip

When returning a disrupted line to schedule, one must consider the knock-on delay
of a delayed service to subsequent services which use the same rolling stock.
The connecting service cannot depart its first stop until after the delayed service
has reached its final stop and required activities are completed (e.g. the driver
changing ends). If the connecting service is delayed, this may result in a delay to
services which connect with it. To model this propagation of delay, we include
round tripping, where connections between services are included. In this case the
rolling stock are modeled traveling from start to end station, where all passengers
alight, then express back to the start station to repeat the journey (see Figure 3).

3.6 Objectives

3.6.1 Total travel time (TT)
The main objective that we will be considering for this model is of average
travel time of passengers (or equivalently the total travel time taken over all the
passengers).

One way to view the total travel time objective function is by train. The train
Ti arrives at the final destination at time yi,m and at each station Sj collects
ci,j passengers. So there are ci,j passengers departing from station Sj on train

Ti and they contribute ci,jyi,m − ρj
∫ σu

i,j

σl
i,j

t dt = ci,jyi,m − ρj
(σu

i,j)
2−(σl

i,j)
2

2 to the
total travel time. Thus the objective function can be represented as the quadratic
function

∑

i∈N

∑

j∈Mm

(ci,jyi,m − ρj
(σu

i,j)
2 − (σl

i,j)
2

2
) (5)

=
∑

i∈N

∑

j∈Mm

ci,jyi,m −
∑

j∈Mm

ρj
(dn,j)

2 − pj
2

2
(6)

=
∑

i∈N

li,myi,m −
∑

j∈Mm

ρj
(dn,j)

2 − pj
2

2
(7)

Since we assume that ρj is constant, we have μ = − ∑
j∈Mm

ρj
(dn,j)

2−p2
j

2 is constant

and so our objective is to minimize μ+
∑
i∈N

li,myi,m.

3.6.2 Passenger weighted minutes (PWM)
The passenger-weighted minutes objective function is defined (with the intention
of minimizing) as ∑

i∈N

l′i,mti, (8)

where l′i,m is the number of passengers on Ti arriving at Sm if Ti ran to the original
schedule and ti satisfies the following constraints
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ti ≥ 0 i ∈ N
ti ≥ yi,m − ai,m i ∈ N .
Realistically, in the presence of a delay we should have yi,m − ai,m ≥ 0 in

which case ti can be replaced with yi,m − ai,m.

3.6.3 Naive or business as usual (N)
A “naive” or “business as usual” solution is obtained by fixing the arrival and
departure times of all trains traveling before Ti′ (the delayed train) to the original
schedule and forcing all other trains affected by the delay to stop at each station
and then minimizing the objective function

∑
i∈N,j∈M

yi,j .

4 Implementation and results

In this section we discuss an implementation where we assume continuous time
and therefore the decision variables so far discussed are assumed to be continuous.
The disjunctive constraints (constraints (k),(l) and (m)) will introduce binary
variables, so our problem is a mixed integer problem with non-convex quadratic
objective.

Using the open source solver SCIP 2.1.1 [2], which is capable of solving
mixed integer problems with non-convex quadratic objective functions, we solved
instances of our model with surprising success. Figure 3 shows an optimal instance
of (TT) with four trains and five stations, where each train travels from S1 to S5

(collecting passengers along the way and then emptying at S5), then express back
to S1 to repeat the journey once more. We assume that the travel from S5 to S1 is
also first in first out without the ability to overtake. In this example T3 is delayed
for 10 minutes at time 23 minutes. At station S1, S2, S3 and S4, the numbers next
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Figure 3: 10 minute delay to train 3 with round trip effects.
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to each train in Figure 3 represent the number of passengers collected at that station
and the number at S5 corresponds to total number of passengers that the train has
collected or equivalently, the number of passengers alighting at S5.

We assume that the trains have a capacity of 1000, so the boarding rate constraint
(constraint (m) from Section 3) enforces that the boarding rate slows from an
original boarding rate of 600 passengers per minute, to a rate of 240 passengers per
minute once the train contains 700 passengers (that is b1 = 600, b2 = 240, γ = 0.7
and c = 1000). In the example shown in Figure 3, without the boarding constraint
the total travel time is 143132.6 with an average of 21.4 minutes (compared to
143936.2 with average 21.6) showing that the constraint does come into effect (if
only making a negligible difference).

In Section 2 we saw that it is sometimes worthwhile for preceding trains to delay
themselves in order to reduce the average travel time of passengers. In Figure 3 we
see that trains T1 and T2 do not delay themselves on their first trip to Sm, however
they do decide to delay their departure after returning to S1 to reduce the impact
of the delay on the second pass.

The (min) columns of Table 1 show the average travel time solutions that are
optimal with respect to the three objective functions (TT), (PWM) and (N), applied
to the example shown in Figure 3. The total number of passengers in this example
is 6678. Each result is solved to optimality within a 5 minute period on an Intel(R)
Core(TM)2 Duo CPU T9300 @ 2.50GHz 2GB RAM.

Table 1: Comparison of objectives.

Delay Duration (TT) (PWM) (N)

(min) (min) ($) (min) ($)

5 20.38 22.92 2827.02 20.61 255.99

10 21.55 23.49 2159.22 22.42 968.31

15 23.91 25.46 1725.15 26.80 3216.57

Interestingly, in the optimal solutions found for (N) with 5 and 10 minute delays,
the average travel time for passengers is less than that for the optimal solutions
found for (PWM). Furthermore, there is no optimal solution for (PWM) that
produces the same (or smaller) average travel time for passengers as that found
for (N).

A passenger hour is worth approximately AU$10 (see [3]) and therefore an
optimal solution for (TT) will provide the lowest possible cost in passenger hours.
The ($) columns of Table 1 show the extra cost incurred if the operator rescheduled
with respect to (PWM) or (N) rather than (TT). Note that this scenario ranges over
a less than a 2 hour period.

4.1 A real world example

We now consider a simple approximation to the Sandringham line of Melbourne’s
metropolitan rail network. The first station is Sandringham, the end of the spoke,
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and the fourteenth station is the hub, Flinders Street station. This scenario
represents a typical morning period (in this case 80 minutes), where the third train
is delayed for 10 minutes at time 25. The number of people arriving at each station
was taken from 2006 census data, that is, we took the number of people who take
the train to work at each of the locations surrounding the stations and divide by
schedule departure of the final train to get the passenger flow to stations.

We have 7 trains 14 stations with each train spaced 7 minutes apart. Each train
has a capacity of 1300 and is considered crowded at a load of 910. A rate of
10 passengers per second can board a non-crowded train, whilst 4 passengers per
second can board a crowded train. Trains must obey a headway of 90 seconds, have
an acceleration and deceleration period at a station of 30 seconds and must hold
doors open for a minimum of 30 seconds if collecting passengers. The passengers
begin arriving at stations S1, S2, . . . , S14 at times

0, 0, 3, 6, 10, 11, 14, 18, 19, 23, 24, 27, 29, 0

respectively. The distances (measured in minutes) between stations in order of
stations are

2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 3.

The passenger arrival rates at stations S1, S2, . . . , S14 are given by

4, 13, 11, 11, 5, 7, 14, 15, 12, 9, 14, 11, 6, 0

respectively.
Figure 4 shows a solution, with respect to the objective (TT), with a gap of 6.31.

The gap is calculated to be Tu−T l

T l−μ
, where T u is the bound of the total travel

time, T l is the dual bound of the total travel time and μ is the constant defined in
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Figure 4: Minimum average travel time solution for Sandringham (TT).
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Section 3.6.1. Passengers in Figure 4 have an average travel time of 22.45 minutes
whilst optimal solutions for (N) and (PWM) give average passenger travel times
of 23.90 and 24.74 minutes respectively.

These results were obtained on an Intel(R) Core(TM) i7 CPU 920 @ 2.67GHz
12GB RAM running SCIP 2.1.1 compiled with Ipopt [4] and modelled in
MiniZinc [5]. The (N) and (PWM) solutions were found in approximately 20
seconds and 1 minute of solving time respectively. The (TT) result was left running
for approximately 5 hours. A smaller gap was not achieved for the (TT) solution
due to RAM consumption. A solution of (TT) producing average travel times of
23.44 minutes was found in approximately 2 minutes whilst a solution of 24.18
minutes was obtained in less than 1 minute.

5 Conclusion

We have demonstrated that in the presence of a passenger rail network disruption,
that rescheduling to minimize passenger travel time is achievable in simple rail
networks. Although (PWM) appears at first glance to account for passenger travel
time, we show that in fact the average travel time of passengers in a naive solution
can be less than that of an optimal solution for (PWM). Thus in a rail network
which penalizes the operator based on (PWM), to reduce costs, the operator would
like to minimize the (PWM) objective, whilst passengers as a collective may prefer
a minimal (N) solution and ultimately a minimal (TT) solution.
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